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Amorphous Polymers by the 
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Department of Polymeric Materials. S-402 20 Gothenburg, Sweden 

(Received Noveniber 13th, 1974) 

The finite element method (FEM) is used to calculate the distribution of residual internal 
stresses in an injection molded plate-shaped polystyrene specimen. The first step of the 
calculating procedure is the determination of the temperature distributions in the plate and 
its variation with cooling time. The temperature distribution data are then used for the 
determination of the corresponding stress distribution. Also this latter step is accomplished 
using the FEM-technique. The residual stress distribution is obtained when the sample has 
been cooled to the temperature of the mold. The main result of the calculations is the finding 
that the surface layer of the plate is subject to compressive stresses, while the interior accom- 
modates stresses of tensile type. The calculations relate to a polystyrene specimen. The results 
are shown to agree well with earlier data concerning internal stresses in injection molded 
objects. The possible influence of anisotropy and visco-elastic relaxation has been neglected. 
The method can be applied to other amorphous polymers and, after a slight modification, 
also to polymers of semicrystalline type. 

INTRODUCTION 

Effects produced in injection molded parts by the combined action of aniso- 
tropy and residual thermal stresses are normally associated with the occurrence 
of “internal” of “frozen-in” stresses. Despite their obvious technical import- 
ance, the knowledge concerning the physical nature of these stresses, their 
measurement and influence on the properties of the molded part is highly 
limited. This applies also to the separation of the effects of anisotropy and true 
residual stresses. 

The present paper is an account of a theoretical work the aim of which was to 
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44 M. RIGDAHL 

calculate the magnitude of residual thermal stresses in an injection molded, 
rectangular (square3 plate, where the possible role of anisotropy and thermal 
stress relaxation has been neglected. The mathematical technique employed is 
the numerical method of finite elements (FEM). The results obtained will be 
shown to agree qualitatively with previous data relating to thermal stress 
profiles measured by the thermal shrinkage method,' the method based on 
removing thin layers from the surface of the molding2 and the measurement of 
hardness.3 The results also agree with previous calculations using somewhat 
less advanced mathematical tools. 

The computer program based on the finite element method allows the 
calculation of the thermal stress profiles across the width of the sample at 
various times during cooling of the melt until the temperature of the solidifying 
melt and that of the mold have become equal. Another result is the variation 
of the sample temperature with time during the solidification of the melt. As 
the method cannot take account of relaxation effects, the results obtained give 
the theoretical maximum stresses not reduced by the action of viscoelasticity. 

The difficulties in separating the contribution of anisotropy and thermal 
stresses in plastics seem to explain, at  least partly, the limited amount of work 
published in this area. X-ray methods4 being a standard procedure in the 
metal field, cannot always be used with polymers, mainly because of their 
imperfect or even amorphous structure. A simple method, even though not 
easily amenable to physical interpretation, is the determination of thermal 
shrinkage.' For injection molded samples, this method usually shows the 
largest shrinkage near the surface; the shrinkage of the middle parts being 
substantially lower. Such stress profiles are normally discussed in terms of the 
temperature and pressure conditions prevailing during a molding cycle 
together with the changes in the morphology of the polymer.5.6 Using such a 
method, Knappe could show that negative thermal stresses amounting to 
100-200 kp/cm2 appeared in quenched polymeric samples. Their magnitude 
was dependent on the quenching conditions.1 

Another, rather crude method for studying thermal stresses is to successively 
remove thin layers of the polymer from the surface of the molding and to 
measure the resulting deformation.2 Also hardness values have been used in 
order to calculate the internal stress level.3 This method gives directly a 
numerical value of the stress level. Measurements on polystyrene moldings 
showed negative stress values of ca. 100 kp/cm2 near the surface. Finally one 
could mention the use of birefringence7 and holographic methods.8 

For metals and ceramic materials, thermal stresses resulting from certain 
types of thermomechanical treatment have been calculated. Among the 
numerous examples, the thermal stress distribution in hot-rolled steel9 or in 
glass plate cooled from both sideslo-11 can be mentioned. Both elasticg and 
vrsco-elastic niodelslOJ1 were used in the calculations. 
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CALCULATION-RESIDUAL THERMAL STRESSES 45 

Theoretical calculations regarding polymers are far less numerous. Knappel 
utilizing some results given by Timoshenko12 considered a thin injection plate, 
neglecting relaxation effects. He arrived at the following formula giving the 
thermal stress distribution 

where E is Young's modulus, a the thermal expansion coefficient, TO the differ- 
ence between the temperature of the surface of the plate and the temperature 
at which the plate solidifyes, uZ the longitudinal stress in the plate, 2c the width 
of the plate and y is between --c and c. According to Eq. (l) ,  the stresses are 
highest at the surface ( y  = *-c) of the molded part and they are negative 
(compressive stresses). This is in good agreement with the measurements 
mentioned above.l Further, this also justifies the elastic approach, neglecting 
relaxation effects, used in the calculations presented below. 

GENERAL BACKGROUND 

Thermal stresses in a solidifying polymer body are due to restraints occurring 
between parts of the body where the solidification process has reached different 
levels. In the initial stage, weak tensile stresses are present in the surface layers, 
primarily due to the weak constraint exerted by the molten interior. At the end 
of the process, a stress reversal has taken place, whereby large compressive 
stresses are produced at the surface, while the interior is in a state of tensile 
stress. It may be noted that no adhesion between the walls of the mold cavity 
and the polymer is necessary in order to explain the occurrence of such stress; 
they can appear in a freely solidifying body as well, provided the cooling is not 
slow enough. 

The basic assumption in calculating thermal stresses in an element of a body 
being cooled under such constraints that thermal shrinkage is completely 
prevented is the following formula, 

where CJ is the stress developed during a temperature decrease AT, and E and a 
are the modulus of elasticity and the coefficient of thermal expansion, respect- 
ively. It is thus evident that a knowledge of the temperature distribution and its 
changes during cooling enables one to calculate the magnitude of the thermal 
stress in different parts of the body. 

The temperature distribution is determined by the heat conduction equation 
together with appropriate boundary conditions, 

aT 

u = Ea AT (2) 

AT = C(T) - + Q(T) (3) at 
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46 M. RIGDAHL 

where C(T) is a temperature dependent quantity, Q(T)  the heat developed in 
the specimen and A the Laplacian. 

The time dependent temperature differences between different parts of the 
body are transformed to equivalent temperature loads W, which in principle 
are given through an expression similar to Eq. (2). The deformation w in 
various parts of the body resulting from this load is 

BW = W (4) 
where B is a differential operator. If the body under study is a disc located in 
the xy-plane and the disc is assumed to be in a plane strain state, B has the form 

where E is Young's modulus and Y Poisson's ratio for the material in question. 
The operator B is sometimes referred to as the structure stiffness. 

Thus through Eq. (4) the time dependent deformation (w) in different 
parts of the body can be calculated. The corresponding transient thermal stress 
distribution is given from Hooke's law, which can be written as 

a = H w  ( 5 )  

where (r corresponds to the stresses in the specimen and H is a matrix given by 
the theory of elasticity. 

THE FINITE ELEMENT METHOD (FEM) 

Equations giving the time dependent distributions of emperature, stress or 
strain in a molded specimen a t  various time during its cooling cannot, as a rule, 
be solved in closed form. Energy methods, often used in structural mechanics, 
have proved their usefulness in solving problems of this type. The finite 
element method used in the present case has the advantage that both the 
temperature and the stress distribution can be determined in an analogous way. 
The method of finite elements is an energy method, where the deformation 
of a body subjected to an arbitrary load is determined from minimum energy 
principles. In other words, one determines the deformation field resulting in a 
minimum potential energy of the system. The body under consideration is 
divided into a number of elements, preferably of a simple geometrical form. 
The corners of these elements are called nodes. When the body is subject to a 
load, the nodes are displaced. The aim of FEM is to calculate the displacement 
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CALC U LATION-RESI D U AL THERMAL STRESSES 41 

field in a way which minimizes the potential energy of the system. The calcu- 
lated field represents an approximation to the true state of the body, the 
deviation from this true state being dependent on the size of the elements. 

As the FEM technique seems not to have been used previously for calculating 
thermal stresses in polymers, a short outline of the calculation of the stress 
distribution is given here. Calculating the temperature distribution is in all 
respects similar.13 The potential energy of a disc subjected to an arbitrarily 
distributed load, W ,  resulting in a deformation field, w, is given by the following 
expression. 

where (w, Bw) is the scalar product: 
F(w) = (w, Bw) - 2(w, W )  (6) 

(7) 

(8)  

R is the area of the plate. It may be noted that F(w) equals twice the potential 
energy. 

From the variational calculus it is known that the deformation w that results 
from the load Wgives the functional (6) its minimum value. 

The plate is subdivided into a number of triangular elements. The points 
where the corners of the elements meet are called nodes. 

The approximate solution to Eq. (4) is assumed to have the form 

(IV, Bw) = I Bw . W' nn 

(WJ, W )  = j wwnn 

n 
and (w, W )  is given as 

n 

r 

%(X, Y )  = 2 gr(x, Y )  ' Pi (9) 
i =  1 

if the plate is placed in the x-y plane. 
The functions gi (x ,  y ) ,  which are determined prior to the calculation, are the 

so-called coordinate functions and pr represents the unknown (and sought) 
nodal displacements resulting from the load W .  By variational methods it is 
possible to show that the deformation which minimizes the potential energy 
and thus is a solution to the differential equation Bw = W, can be obtained 
from 

where P is a column matrix with r elements given as 

p = E-'P (10) 

pt  = (gr ,  W )  = s gs(& Y ) W k  v)  dx 4 (1 1) 
n 

where E is a symmetrical rxr stiffness matrix with the elements 

. 
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48 M. RIGDAHL 

When the nodal displacements now have been determined, the stresses in each 
triangular element are given by Hooke's law. 

If the disc is subject to a temperature change this change is transformed to an 
equivalent temperature load Wt (or temperature load vector P t ) .  

A general outline of the finite element method can be found in Ref.14 

LIMITATIONS OF THE METHOD 

The method of calculating thermal stresses as outlined above cannot take 
account of relaxation effects likely to occur during cooling of the sample. Thus 
the values obtained are maximum values constituting an upper boundary to 
the thermal stresses which can occur under given conditions of cooling a 
certain sample. Due to relaxation effects, the internal stresses actually occurring 
are lower. On the other hand, they will agree, with regard to their distribution, 
with the unrelaxed stresses. The same applies to the case of linearly visco- 
elastic bodies, whose relaxation leaves the thermal stress distribution un- 
affected, only causing an overall decrease of the stress values.lO.ll 

For polymers with a low relaxation rate at room temperature, such as 
PS and ABS, the error incurred due to relaxation effects appears to be relatively 
small and without practical significance. 

In this investigation, the molded material is treated as being isotropic. This 
assumption seems justified here in view of the shape of the molding. There is 
on the other hand no difficulty in extending the analysis to anisotropic (ortho- 
tropic) bodies. Finally, it may be noted that the analysis has been restricted 
to a two-dimensional case, since the FEM-technique becomes difficult to 
handle when applied to three dimensions. 

I t  may be added that the present calculations do not take account of any 
adhesion between the molding and the walls of the mold. 

CALCU LATlO N S 

Assumptions regarding specimen shape and material properties 

The specimen analyzed here is shown in Figure 1. It is assumed to consist of 
normal polystyrene, having the physical characteristics given below. The 
injection molding conditions are assumed to be as follows: injection pressure 
100 MPa, nozzle temperature 220°C, temperature of the mold 20°C. 

The physical characteristics of the polystyrene used were assumed to vary 
with temperature in a linear manner or to remain constant. The following 
values were used.15 
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I 

FIGURE 1 The geometry of the injection-molded sample. (All dimensions given in mm). 

Specific heat 
Cp(T)/Cp(298 K) = 0.105 + 0.029T T < Tg 
Cp(T)/Cp(298 K) = 0.64 + 0.021T T > Tg 

Thermal conductivity 
A(T)/h(Tg) = 0.66 + 0.34T/Tg - T < Tg 
A(T)/A(Tg) = 1.20 - 0.20T/Tg T > Tg 

Modulus of elasticity 
E = 3 .  lo9 N/m2 
E = 3 * l o 5  Njm2 

a = 7 .  10-5 ~ - 1  

a = 17. 10-5 ~ - 1  

Coeficient of thermal expansion 

T < T, 
T > Tg 

T < Tg 
T >  Tg 

The density was set equal to 1050 kg/m3 and independent of temperature. For 
the Poisson's ratio the value 0.32 was used below and 0.5 above Tg. 

The influence of pressure on Tg was described by dTg/dp = 0.028 K/bar in 
the 0-100 MPa range. The influence of pressure on the properties listed above 
e.g. C p  was obtained by shifting the Cp-T-curves parallel to the T-axis by the 
amount corresponding to the dTg/dp-shift.Is All the other quantities were 
assumed independent of pressure. This was justified by results of considerations 
taking account of possible pressure effects. 

To accomplish the continuous shifting of Cp and Tg with temperature and 
pressure an equation of state (p-v-T-relation) was needed. The Spencer- 
Gilmore equation'' was assumed valid for polystyrene in the molten state, 
i.e. 

(p + T)(V - W )  = R'T (13) 

with T = 186,3 MPa, w = 0,822 10-3 m3/kg and R' = 0.8 MPa 
m3/kg K. In Eq. (13) p denotes the pressure, v the specific volume and T the 
temperature. 
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50 M. RIGDAHL 

Another property of importance in this connection is the surface conduc- 
tance (as).  The heat transfer at the surface (0) can be calculated as: 

08 = asA(Ts - Ta) (14) 

where 0 = heat removed from the surface per unit time, as = surface con- 
ductance, Ts = temperature of  the surface and Ta = temperature of the 
surroundings (in this case Ta is the mold temperature). The surface conductance 
can be split in three parts: conduction, convection, and radiation contributions. 
The convection contribution was neglected in this case. Similarly, the radiation 
was neglected, being at the highest temperature, at the most, 10% of the 
conduction and falling rapidly with decreasing temperature. In this case as 
was estimated to be 150W/m2 K. 

Calculation of temperature and stress distributions in the 
specimen 

We start by calculating the temperature distribution in the disc as a function 
of time. Suppose that the disc lies in the xy-plane and its thickness d in the 
direction of the z-axis is so small that the temperature can be taken as constant 
over it. Let a8 be the surface conductance of the material, A its thermal con- 
ductivity, p its density and Cp its specific heat; then the differential equation 
the temperature should satisfy is: 

where the specific heat and thermal conductivity are allowed to vary with 
temperature in the way described above. Eq. (1 5 )  is a special case of Eq. (3). 

At the boundaries the cooling of the molded part is determined by the 
surface conductance in the following way 

where n is a vector normal to the surface of the part. 
This boundary value problem was solved numerically using a FEM-based 

computer program developed for this purpose. 
When the temperature distribution is calculated only one quadrant of the 

plate has to be considered. The plate is divided into triangular elements as 
shown in Figure 2 and the temperature is calculated in each node. The polymer 
is assumed to have a certain initial temperature relative to the mold (200 K). 
Two seconds after the cooling has started the temperature distribution is 
calculated. This calculation is repeated every two seconds for a period of 
90 seconds. 
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Y 

t 

FIGURE 2 Element division of the first quadrant of the plate (1 18 nodes, 196 elements). 

After each time step the temperature differences are transformed into 
equivalent temperature loads as described earlier. The corresponding de- 
formation distribution w is then determined as a function of time by means of 
Eq. (4). When the deformation field is known the corresponding transient 
stresses are calculated using Hooke’s law, Eq. (5). 

A FEM-computer program has been developed for the elastic stress calcu- 
lations. The same network can be used as in the temperature analysis (Figure 
2). Using this method one obtains the thermal stress distribution built up in the 
disc as a function of time. When the part has attained the temperature of the 
mold, i.e. after a sufficiently long cooling time, the thermal stress values are 
those corresponding to the residual stress distribution. Since the disc can be 
assumed to have a constant thickness during solidification it seems plausible 
to consider a plane strain rather than a plane stress state as an appropriate 
description of the problem. 

The two FEM-computer programs (temperature and stress distribution), 
are processed simultaneously by the computer. 

RESULTS 

In this section the time variation of the temperature distribution and the 
residual stresses in the part will be discussed. 

The thermal analysis shows that the disc can be divided in two regions: 
(a) a narrow region near the walls of the mold that cools very rapidly and (b) 
the interior of the disc that cools at a substantially lower rate, Figure 3. 
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solidified 

cooling time: 12 s 28 s 30 s I 30 s 

FIGURE 3 The solidification of the molded plate. 

The cooling profiles for three different points are shown in Figure 4. The 
cooling rate is much faster for the points at the boundary than for the point 
in the middle and the difference between the two outer points is not very 
significant. As expected the passage through the glass transition point has no 
noticeable effect on the cooling profiles. 

TIME s 

FIGURE 4 The cooling profiles for three different parts of the plate. 

For semicrystalline polymers the corresponding cooling curves would 
exhibit a stepwise change in the slope in the solidification interval. 

The development of thermal stresses is governed by temperature differences 
between different points of the plate within the temperature range in which 
solidification takes place, cf. Figure 5 .  

In Figure 5 the difference in temperature between point (1) and (3) is shown 
as function of time. The curve rises very sharply since the outer parts of the 
plate cool rapidly. The interval in which the plate becomes solid is indicated 
in the figure. This interval contains the greatest temperature difference (90°C) 
which has a strong influence on the magnitude of the residual stresses. At the 
end of the cooling stage the temperature difference goes to zero as expected. 
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I I I I I 
50 75 100 

solidifying TIME s 
o t interval 2 5 1  

FIGURE 5 The temperature difference between point ( 1 )  and point (5) shown in Figure 4 
as a function of time. 

We now turn to the stress field. For symmetry reasons only the variation of 
the normal stress u, and the shear stress T~~ is considered. Once again, at first 
only stresses in the areas around points (2) and (3) are discussed. 

The stresses a, and rZy around point (2) are shown in Figure 6. During filling 

2 

$ 0  

v) 
v) w 
OL c v) 

- 5  

- 10 

-15 

- 20 I 1 1 I 

20 40 60 80 
TIME I 

FIGURE 6 
as a function of time. 

The normal (az) and shear (sZv)  stresses around point (2) shown in Figure 4 
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54 M. RICDAHL 

of the mold the outer parts of the plate, i.e. those in contact with the walls 
of the mold cavity, are cooled at  a high rate. 

Being prevented from free shrinkage, these parts accommodate small 
tensile stresses. For stress balance reasons, the interior of the plate contains 
corresponding compressive stresses. The result of the calculations relating to 
the normal stress uz shown in Figure 6 confirm this picture, uz having small 
positive values for cooling times up to 15 s (a somewhat clearer picture of this 
stress is given in Figure 8). After some time, the temperature in the interior of 
the plate has decreased. Free shrinkage of the interior is now prevented by the 
stiffness of the surface layers which have solidified earlier. 

The result of this is that the stresses in the surface layer turn negative 
(compressive stresses) while the interior of the plate now contains tensile 
stresses (see also Figure 9). The magnitude of the negative stress in the surface 
layers is considerable, Figure 6 .  The shear stresses, on the other hand, are 
negative in the beginning of the cooling process and positive at the end of it. 
The maximum value O f  TzU is only about a tenth of the normal stress 0,. 

Figure 7 shows the stress uz in the middle of the plate. The time dependence 
of the stress is in accordance with what has been said above. At first the stress 
i s  negative for 26 s in the rubbery state, whereatter it assumes a comparatively 

-0.1 I I I I I I 
20 40 60 80 

T I M E  s 

FIGURE 7 The normal stress (oz) in the middle of the plate as a function of time. 
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large positive value. This change occurs, as expected, later than the corres- 
ponding change for those parts of the plate lying near the cavity walls. The 
residual stress level is far lower ( - 1 /lo) that the residual stress value near the 
cavity walls. For symmetry reasons the shear stress T~~ is zero in the middle 
of the plate. 

In Figures 8 and 9 the normal stress distribution uz is shown along 
the x-axis at the beginning and end of the cooling process respectively. In the 
initial stage the stresses are positive at the boundary and negative in the 
interior of the plate; they are comparatively small. When the cooling has 
ended the situation is altered. The surface stresses then become negative, 
while the interior accommodates tensile stresses. The magnitude of these 
thermal residual stresses is much larger than that of the stresses at  the beginning 
of the cooling process. 

The normal stresses q, and uz show a dependence on time and position 
which is similar to a,. 

This change with time from positive to negative stresses and vice versa is in 
agreement with similar results concerning stresses in hot-rolled steel beams.9 

v) m 
Ly 

z I- v) 

X cm 

FIGURE 8 
yter 2 s. 

The normal stress distribution (uz) along the x-axis (shown in Figure 2) 
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X cm 

FIGURE 9 The residual stress distribution (uz) along the x-axis. 

FINAL REMARKS 

The results obtained seem to agree well with the general thermal stress pattern 
observed earlier on steel beamsQ and glasses.10.11 Considering what has been 
said above about the origin of such stresses this is hardly surprising. In fact, 
thermal stress patterns of the type found here should be common to all solidify- 
ing bodies having a non-homogeneous temperature distribution. In all such 
cases, the solidified outer layers provide the initial constraint, which may or 
may not be accentuated by possible adhesion effects. 

The FEM-computer programs used are quite general and easily adaptable 
to handle additional boundary conditions, like a varying amount of adhesion 
between the solidifying body and its surroundings. Also the effect of time, that 
is the effect of the relaxation likely to be encountered in certain polymeric 
systems, could be taken into account. The fact that our results agree with 
earlier calculations and experimental findings shows, that the relaxation effects 
are comparatively small and that the procedure can be applied directly 
without further corrections for possible time effects. With softer polymers, like 
polyethylene, the situation may, however, be different, as relaxation effects in 
such a polymer are known to occur at a substantial rate at  moderate tempera- 
tures. One of the features of the FEM-programs used is its ability to calculate 
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the thermal stress distribution at  various times during the cooling procedure. 
The thermal stress reversal, both in the surface layers and in the interior of the 
body are clearly brought out in this way. 

Needless to say, the method can be applied to any polymer whose physical 
characteristics relevant in the present context are known. Such properties 
include for instance the effect of pressure and temperature on the T,- and 
Tm-values. There are, for instance, no physical difficulties involved in including 
crystalline polymers in this treatment. 

A short remark, finally, may be devoted to the possible influence of the 
injection pressure. As well known, such pressures are comparatively high, of 
the order of magnitude 50-100 MPa. In the present case, no account has been 
taken of such effects, simple considerations having demonstrated that the 
influence of the injection pressure of normal magnitude (5100 MPa) on the 
thermal stress distribution is of minor importance only. 
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